BidangDatar Berbantuan Komputer Berbasis Multimedia Pada Mata Pelajaran Matematika untuk SMP Kelas VII " tujuan penulisan ini sedikit banyak nya ingin menggambarkan program . Kelas 9 SMPKESEBANGUNAN DAN KONGRUENSISegitiga-segitiga kongruenGambar berikut adalah segitiga ABC sama kaki dengan AC=BC .C A D BJika CD adalah garis bagi dari C ke garis AB , maka dengan aksioma ..... segitiga ADC kongruen segitiga BDC .Segitiga-segitiga kongruenKESEBANGUNAN DAN KONGRUENSIGEOMETRIMatematikaRekomendasi video solusi lainnya0201Segitiga ABC siku-siku di B kongruen dengan segitiga ...0331Perhatikan gambar trapezium ABCD dan PQRS yang kongruen d...0316Perhatikan segitiga berikut ini yang kon...Teks videoSebuah pertanyaan gambar berikut adalah segitiga ABC sama kaki dengan AC = BC jika CD adalah garis bagi dari C ke garis AB maka dengan aksioma apa 3 adalah memiliki panjang dan sudut yang sama dan menyatakan bahwa ini kongruen terus mencari tiga syarat yang sama. Perhatikan Kalau CD adalah garis bagi itu berarti garis ini membagi dua sudut sama besar Oke saya bisa mengatakan bahwa sudut ADC = sudut B DC ya kan lagi di sini garis AC = garis BC karena sama kaki ada juga ada garis CD = CD karena berhimpit perhatikan di sini ada satu sudut dan 2 Sisi C berarti aksioma nya adalah B Sisi sudut Sisi Karena untuk dua sisi dan satu sudut itu tidak ada sisi-sisi sudut atau sudut sisi-sisi dari jawaban adalah Baiklah sampai jumpa lebaranSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul NSNaisya S08 Juni 2021 1335PertanyaanMisal ABC adalah segitiga sama kaki dengan AC = BC = 5. Jika B5, 1; C1, -2 dan A5, y berada di kuadran I, maka AC = ...1530Belum ada jawaban 🤔Ayo, jadi yang pertama menjawab pertanyaan ini!Mau jawaban yang cepat dan pasti benar?Tanya ke ForumBiar Robosquad lain yang jawab soal kamuTanya ke ForumRoboguru PlusDapatkan pembahasan soal ga pake lama, langsung dari Tutor!Chat TutorTemukan jawabannya dari Master Teacher di sesi Live Teaching, GRATIS!Klaim Gold gratis sekarang!Dengan Gold kamu bisa tanya soal ke Forum sepuasnya, MatematikaGEOMETRI Kelas 12 SMAKekongruenan dan KesebangunanKesebangunanPada segitiga siku-siku sama kaki ABC, sisi AB dan BC masing-masing terbagi menjadi tiga bagian yang sama, berturut-turut oleh titik K, L, dan M, N. Jika luas segitiga ABC adalah x cm^2, maka luas segitiga KMN adalah ... cm^2. KesebangunanKekongruenan dan KesebangunanGEOMETRIMatematikaRekomendasi video solusi lainnya0322Pada segitiga siku-siku sama kaki ABC, sisi AB dan BC mas...Pada segitiga siku-siku sama kaki ABC, sisi AB dan BC mas... Hai Richard, kakak bantu jawab ya... Jawabannya adalah b. 50° Ingat Jumlah sudut dalam ∆ adalah 180° Pada segitiga ABC sama kaki dengan AC = BC, berlaku ∠CAB = ∠ABC Jika 2 garis sejajar di potong satu garis lainnya, maka sepasang-sepasang sudut dalam bersebrangannya adalah sama. Jumlah dua sudut saling berpelurus adalah 180° Sehingga, ∠BED = 110°, maka ∠BED + ∠CED = 180° saling berpelurus ∠CED = 180° - ∠BED ∠CED = 180° -110° ∠CED = 70° ∠ECD + ∠EDC + ∠CED = 180° jumlah sudut dalam ∆CED ∠ECD = 180°- ∠EDC + ∠CED ∠ECD = 180°- 90°-70° ∠ECD = 20° ∠ACD = 60° ∠ACB + ∠ECD = 60° ∠ACB + 20° = 60° ∠ACB = 60° - 20° ∠ACB = 40° ∠CAB = ∠ABC aturan ∆ sama kaki ∠CAB + ∠ABC + ∠ACB =180° ∠ABC + ∠ABC = 180° - ∠ACB 2×∠ABC = 180° - 40° ∠ABC = 140°/2 ∠ABC = 70° ∠FBE = ∠ECD aturan sudut dalam bersebrangan ∠FBE = 20° ∠ABC = 70° ∠ABF + ∠FBE = 70° ∠ABF = 70° - ∠FBE ∠ABF = 70° - 20° ∠ABF = 50° Jadi, besar ∠ABF adalah 50°. Oleh karena itu jawaban yang benar adalah b. Semoga membantu ya YEMahasiswa/Alumni ""22 Juni 2022 0741Jawaban yang benar adalah 49°. Ingat konsep berikut sudut yang saling bertolak belakang sama besar Jumlah besar sudut dalam segitiga adalah 180° ∠ACB = ∠ABC karena segitiga sama kaki misal ∠ACB = ∠ABC = p maka 180° = ∠A + ∠ACB + ∠ABC 180° = 58° + p + p 180° - 58° = 2p 122 = 2p p = 122°/2 p = 61° ∠FEB = ∠CEB bertolak belakang ∠FBE = p = 61° maka 180° = ∠BFE + ∠FBE + ∠FEB 180° = 70° + 61° + ∠FEB 180° = 131° + ∠FEB ∠FEB = 180° - 131° ∠FEB = 49° ∠FEB = ∠CED = x = 49° Jadi, nilai x adalah 49°.Yah, akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!

misal abc adalah segitiga sama kaki dengan ac bc 5